服务热线:18071023591
新闻中心 多种规格的组件和系统解决方案满足您多样化需求

【硒元素抗衰老】硒化钴酸锂正极在高能量电池中实现“抗衰老”型长寿命循环

日期: 2022-06-07
浏览次数: 1
分享到:

【硒元素的抗衰老特性不只体现在人体中】

麻省理工李巨课题组最新Adv Mater成果:硒化钴酸锂正极在高能量电池中实现抗衰老型长寿命循环

第一作者:朱智        通讯作者:李巨*

单位:美国麻省理工学院

【研究背景】

       钴酸锂是小型智能设备用锂离子电池的主要正极材料,但就目前的商用钴酸锂而言,通过提高循环电压,其能量密度还有很大的提升空间,这也是多年来电池研究的热点。

       然而高电压循环钴酸锂时,由于氧离子氧化还原对参与贡献容量,高氧化态氧离子的易迁徙性导致高电压循环时钴酸锂的严重失氧,不仅导致正极材料的不可逆相变阻碍锂离子的传导,而且氧化分解碳酸酯电解液,从而导致电池的循环寿命急剧衰减。硒元素是人体内一种特殊的具有抗衰老功能的元素,其通过捕捉人体新陈代谢过程中多余的氧离子自由基,从而延缓细胞老化。

       本研究借助于硒元素这一独特的捕捉氧离子自由基的特点,针对钴酸锂高压失氧问题,通过原位电化学硒化处理,极好地减缓了氧化物正极在高电压循环时的失氧问题,将钴酸锂正极在4.57V高电压软包电池中实现了稳定的长寿命循环。

【文章简介】

       近日,来自美国麻省理工学院的李巨教授研究组 在国际顶级期刊Advanced Materials (影响因子:27.4)上发表题为“A Surface SeSubstituted LiCo[O2δSeδ] Cathode with Ultrastable HighVoltage Cycling in Pouch FullCells” 的文章。

       该论文深入讨论了商用钴酸锂正极提高循环电压的重要意义及面临的循环难题,通过对钴酸锂正极进行原位电化学硒化处理,实现了高电压钴酸锂正极在软包全电池中的超长寿命循环。

【硒元素抗衰老】硒化钴酸锂正极在高能量电池中实现“抗衰老”型长寿命循环

图1. 钴酸锂正极在高电压充电时的原位硒化过程及稳定氧离子机理

       本工作第一作者为麻省理工学院研究员朱智博士,李巨教授为通讯作者。另外美国布鲁克海文国家实验室、上海交通大学及清华大学相关人员也参与了本研究。

【本文要点】

要点一:原位硒化阻碍高电压充电态氧离子的逃逸

       研究发现,钴酸锂充电到高电压时虽然可以将能量密度提高40%以上,但氧离子的逃逸会在结构中留下大量氧空位,从而导致充电态CoO2发生相变,从层状转变成尖晶石结构,从而阻碍锂离子扩散通道。当材料表面存在硒层时,一方面以二维结构排布的Se可以捕捉材料表面逃逸的氧离子,阻碍其进入电解液。更重要的是,表面的硒原子会进入氧离子空位从而取代氧离子的位置。

       硒离子的取代至少从另外两个方面有效阻碍了氧离子的进一步迁徙:(1)硒离子占据了氧空位,很大程度上增加了氧离子的扩散能垒,从而阻碍氧离子的进一步扩散;(2)硒离子取代了氧离子后,自身显示出正价态,因此硒离子将自身电子转移到了相邻被氧化了的氧离子轨道上,从而将充电态氧离子重新还原到-2价态,稳定了晶格中的氧离子。

       研究者用差分电化学能谱和先进的同步辐射X-ray吸收光谱等手段验证了这一点,证实了表面原位硒化对稳定晶格氧离子的重要作用。

要点二:硒化钴酸锂抑制了高电压充电态氧化自由基的产生

       氧化物正极材料在充电到高电压时,产生的氧离子逃逸会在电解液中产生氧离子类自由基,该自由基具有极强的氧化性,导致碳酸酯类电解液的分解和迅速消耗。

       电解液就像人体内血液,负责正负极之间的离子传输,因此电解液的快速耗尽也是导致高能量电池循环寿命急剧衰减的重要原因。研究者结合电子顺磁共振等手段,证实高电压充电过程中,硒化钴酸锂有效抑制了正极材料中的氧离子逃脱,也抑制了电解液中的氧自由的产生,有效阻碍了电解液的分解。

要点三:硒化钴酸锂抑制了正极CEI的生长及电解液对正极材料的有害侵蚀

       高电压充电时由于氧化物正极在界面处释氧,电解液会在正极表面发生一系列副反应,从而导致正极与电解液界面的钝化(CEI),增加界面阻抗。同时电解液分解的副产物氟化酸等也会对正极有化学腐蚀。

       研究者通过飞行二次质谱对正极表面的组分进行重构后发现,硒化钴酸锂正极的CEI生长得到了有效抑制,同时也抑制了电解液对正极表面的侵蚀,稳定了高电压循环过程中的界面阻抗。

要点四:对电池研究的指导意义

       锂离子电池用正极材料一般由氧化物组成,由于过渡金属离子和氧离子的高度杂化作用,充到高电压时很难避免氧离子氧化还原对的发生而导致氧逃逸。

       氧逃逸不仅会导致正极材料的不可逆相变从而迅速失去电化学活性,还会氧化电解液导致电解液的迅速消耗。因此抑制高电压时氧逃逸是开发高能量氧化物正极的关键。对材料表面进行硒化处理可有效抑制高电压时钴酸锂的失氧问题,从而稳定其高能量循环。

通讯作者介绍

【硒元素抗衰老】硒化钴酸锂正极在高能量电池中实现“抗衰老”型长寿命循环

李巨,教授 ,材料科学家、美国麻省理工学院终身教授 

       曾获2005年美国青年科学家工程师总统奖”(Presidential Early Career Award for Scientists and Engineers)2006年材料学会杰出青年科学家大奖(MRS Outstanding Young Investigator Award)2007年度《技术评论》杂志世界青年创新(TR35)2009年美国金属、矿物、材料科学学会(TMS) “Robert Lansing Hardy”奖。2014/18-19年入选汤森路透/科睿唯安全球高被引科学家名单。2014年被选为美国物理学会(APS)会士,2017年入选材料研究学会( MRS )会士。网站:http://Li.mit.edu

第一作者介绍

【硒元素抗衰老】硒化钴酸锂正极在高能量电池中实现“抗衰老”型长寿命循环

朱智 博士,麻省理工学院项目研究员(Research Scientist )

       主要研究领域为先进储能材料、锂离子电池及电化学。在MIT工作期间,其研究打破了传统锂离子电池正极材料基于分子量重的过渡金属氧化还原对的工作原理,开创了分子量轻的全固态氧离子氧化还原对的储能新机制。并围绕固态氧离子氧化还原对的全新理念,着重开拓了一系列具有稳定循环性能的高容量正极材料领域。近年来,以第一作者在Nature Energy (2)Energy & Environmental ScienceAdvanced Materials Advanced Energy Materials 等国际顶级期刊发表论文数篇,总影响因子超过200


免责声明:以上内容转载自能源界,所发内容不代表本平台立场。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

更多信息点击:李巨团队AM:表面硒取代提高LiCoO2正极的高压循环稳定性|能源学人 (nyxr-home.com)


相关新闻推荐
  • 点击次数: 379
    2022 - 09 - 20
    江西省发布《加快推动富硒功能农业高质量发展三年行动方案(2023-2025年)》 近日,江西省人民政府办公厅发布了《加快推动富硒功能农业高质量发展三年行动方案(2023-2025年)》,系全国首个省级富硒产业行动方案,方案提出到2025年底,江西全省富硒功能农业综合产值突破1600亿元。具体内容如下:为深入贯彻落实习近平总书记对江西唱响富硒农产品品牌的重要指示精神,推动我省富硒功能农业高质量发展,奋力在富硒功能农业赛道上勇争先,现制定本行动方案。一、总体要求坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻习近平总书记关于“三农”工作重要论述和视察江西重要讲话精神,围绕打造在全国有影响力的富硒品牌的目标定位,切实把最具成长性、爆发力的富硒功能农业作为推动现代农业发展的突破口,突出硒元素应用在农业领域中的营养健康功能作用,大力实施“硒+X”发展战略,以绿色富硒耕地为基础,以建设富硒高标准基地为抓手,以生产加工标准化、质量全过程溯源为保障,推动富硒功能农业规模化、产业化、市场化,走出一条高标准、高品质、高效益、强龙头、强技术、强品牌、强管控的富硒功能农业发展之路,让“最好的富硒农产品在江西”唱响全国,为打造乡村振兴样板之地提供有力支撑。——产业规模不断扩大。到2023年底,全省富硒功能农业综合产值力争突破800亿元,2024年突破1200亿元,2025年突破1600亿元。——发展水平不断提升。到2025年底,分批建设10个以上富硒功能农业重点县,全省富硒功能农业龙头企业(以下简称富硒龙头企业)总数达300家,建设各类富硒标准化基地300个。——标准认证体系不断完善。到2025年底,全省富硒省级地方标准总数达20个,各类富硒农产品认证总数达1000个,健全标准、检测、认证、追溯监管四大体系。——富硒品牌不断唱响。到2025年底,构建“1个富硒全域品牌+N个地方公用品...
  • 点击次数: 373
    2022 - 09 - 15
    《科学》:硒氨酸具有独特的生物合成路径该发现有助于更好地理解自身免疫性肝病        硒是一种对生命来说必不可少的微量元素,太多或太少都会致命。在7月17日的《科学》杂志上,美国耶鲁大学和伊利诺伊大学的研究人员描述了其在人体内控制代谢的分子机制。    论文的共同作者、耶鲁大学分子生物物理学和生物化学教授斯特林表示,对于一个复杂的调节摄取系统来说,硒是必需的。人体内有25种硒蛋白,其中大多数是生命所必不可少的。硒被认为有助于人类免除各种病痛的折磨,如不良情绪状态、心血管疾病、病毒感染和癌症等。    硒氨酸是人体内最活跃的硒代谢物,在所有氨基酸中是独一无二的,因为它是唯一一个可在转移RNA(tRNA)分子上进行合成的氨基酸。tRNA在氨基酸之间来回穿梭,形成细胞内的蛋白制作机制。含有硒氨酸的蛋白质负责回收具有保护作用的抗氧化剂,如维生素C和辅酶Q10。    研究人员首次捕捉到了硒氨酸在一个超大尺寸tRNA分子上创建的图像。20个其他的氨基酸及其相关的tRNA利用被统称为延伸因子的蛋白运载工具来运送核糖体。但是,大自然给这个特大tRNA分子提供了一个只将硒氨酸运送到核糖体的特定延伸因子。    研究人员表示,此结构揭示了硒氨酸形成的大部分机制,为该领域20年来的生物化学工作提供了一个解答。这一发现将使人们更好地理解自身免疫性肝病。这种tRNA复合物将成为治疗Ⅰ型自身免疫性肝病的抗体靶标。    美国国立卫生研究院所属国立通用医学科学研究所的迈克尔·本德尔说,硒氨酸已被发现是参与一些正常及疾病生理进程的酶的重要组成成分。此项基础研究揭示了硒氨酸独特的生物合成路径,这最终可能会影响到人体健康的许多方面,如免...
  • 点击次数: 471
    2022 - 09 - 11
    硒(Se)是一种天然的非金属元素,主要存在于硒蛋白和硒酸生物聚合物中。由于硒具有营养学和毒理学作用,因此在医学和生物学领域受到了广泛关注。硒对于细胞功能和几种具有抗氧化特性的硒蛋白合成是必需的,这些蛋白对包括人类在内的哺乳动物生命至关重要。虽然硒这么重要,但目前已知仅有两种将硒引入蛋白质和核酸的途径,即通过硒代半胱氨酸和2-硒尿苷。20多年来,这一领域没有任何研究进展,如何将硒特异性地引入小分子的途径还没有人知道。在一项新的研究中,来自美国普林斯顿大学的研究人员发现了将硒整合到微生物小分子中的生物合成途径,这标志着首次在天然产物中发现了这种原子,为硒生物学开辟了一条新途径。这一发现也有力地表明,硒是所有生命王国的重要微量元素,它在细菌中的生物功能可能比科学家最初假设的更重要。相关研究成果于2022年9月7日在线发表在《自然》杂志上,题目为“微生物中含硒小分子的生物合成”。这篇论文的作者是普林斯顿大学化学教授Mohammad Seyedsayamdost博士。图中显示了将硒整入到微生物小分子中的生物合成途径,图片来自Nature, 2022, doi:10.1038/s41586-022-05174-2。论文第一作者、Seyedsayamdost实验室研究生蔡斯凯鲁兹(Chase Kayrouz)说,“这是一个封闭的领域。在过去的20年里,没有人找到新的代谢硒的方法。20世纪80年代和90年代阐明了硒核酸硒蛋白的生物合成。从那时起,人们认为这些是微生物对硒的唯一作用。我们只是想知道他们会不会把硒纳入其他小分子中?结果,他们做到了。”Seyedsayamdost表示,他们的“研究表明,大自然确实已经进化出了将这种元素整合到小分子、糖和次生代谢物中的方法。硒具有显著的特性,不同于生物大分子中发现的任何其他元素。例如,含硒的抗氧化剂硒代氨酸比这种分子的硫代形式成为更好的抗氧化剂。然...
  • 点击次数: 369
    2022 - 06 - 27
    (消息来源:微看宝清)近年来,我县深入贯彻落实中央和省委、市委关于实施乡村振兴战略的部署要求,依托全境近6000平方公里富硒区域和三江平原富硒土壤核心区的资源禀赋,持续深化农业供给侧结构性改革,大力发展以富硒产业为支撑的绿色高质高效农业,着力推动农业绿色化、优质化、特色化、品牌化。      我县始终牢记习近平总书记“中国粮食、中国饭碗”的重要嘱托,大力发展优质高效农业,依托万亩水稻示范区,打造优质富硒稻米区,实现“种的好”向“卖得好”、“种得更好”转变。            连日来,在宝清县黑土头稻农业有限公司的大米加工车间里机器轰鸣,富硒水稻通过全自动稻米生产加工设备的多道加工和打磨后,变成晶莹剔透、营养丰富的富硒大米,再经过工人们打包装箱,发往全国各地。自2017年黑土头稻公司和“世界硒都”湖北恩施楚风农业联合,在尖山子乡头道林子村签订了4000亩富硒水稻订单,将“黑土头稻”富硒大米推广到全国。今年公司继续和多家企业合作,村民种植的所有富硒水稻都高于市场价进行回收,这样每户每垧地可以增收5000-8000元。   宝清县黑土头稻农业有限公司 总经理 任立刚:我们黑土头稻农业有限公司今年的订单主要来源于北京康鼎商贸、国民康健、中国地质大学(武汉),总订单量比去年增加了15%到20%。我们的发展离不开县委、县政府的支持,富硒大米每年的销量逐年递增,和现在的农业的政策是分不开的。习近平总书记也提到“藏粮于地,藏粮于技”,我们作为种地人,努力把一粒富硒米,万众致富梦,把粮食种好,把粮食品质把握好,打造好自己的黑土头稻品牌,使百姓致富增收早日实现。             ...
武汉中地西能科技有限公司
  • 微信公众号
    微信公众号
    微信公众号
  • 小程序
    小程序
    小程序
联系我们
研究院地址:武汉市东湖新技术开发区锦程街68号
成果转化中心:武汉市洪山区鲁磨路388号中国地质大学(武汉)东区
联系电话:18071023591 (罗先生)
邮箱地址:dyluo@cugse.com
友情链接
Copyright ©2019 - 2024 武汉中地西能科技有限公司 鄂ICP备19021743号-1 犀牛云提供企业云服务